mercoledì 13 gennaio 2021

fiber flow coupled

 

Accuratezza della previsione dell'orientamento delle fibre utilizzando nuovi modelli IISO in Moldex3D

Chao-Tsai Huang, Professore Associato presso il Dipartimento di Ingegneria Chimica e dei Materiali, Tamkang University, Taipei.

Grazie alle sue eccellenti proprietà, il materiale plastico rinforzato con fibre (FRP) è stato applicato in vari settori come una delle principali tecnologie di alleggerimento della parte stampata (Lightweighting Process), in particolare per i prodotti automobilistici o aerospaziali.

Tuttavia, poiché le microstrutture di fibre all'interno della matrice plastica sono molto complesse, non sono facili da visualizzare e gestire in una simulazione. In effetti, il collegamento tra le microstrutture e le proprietà meccaniche del prodotto finale non è di semplice comprensione. Pertanto, negli ultimi anni, il gruppo ingegneristico della Tamkang University (a New Taipei City, Taiwan) ha cercato di correlare le caratteristiche della microstruttura in fibra alla macro-proprietà di un materiale FRP nel processo di stampaggio a iniezione attraverso la simulazione numerica, utilizzando Moldex3D e confrontando i risultati della simulazione con quelli sperimentali.

I risultati hanno mostrato che le proprietà di trazione delle parti iniettate dipendono fortemente dalla distribuzione dell'orientamento della fibra (FOD). Per confermare ulteriormente l'osservazione, sono stati eseguiti una serie di studi di simulazione e verifiche sperimentali, tra cui la previsione dell'orientamento della fibra utilizzando lo strumento CAE e la verifica utilizzando micro-TC.

E’ quindi possibile confermare una certa correlazione tra la caratteristica della microstruttura in fibra e le proprietà fisico/meccaniche per la termoplastica rinforzata con fibre (FRP) nel processo di stampaggio a iniezione.

Nello specifico, si è progettato un sistema di stampaggio a iniezione con tre campioni standard basati su ASTM D638 in cui i campioni hanno gates diversi come mostrato nella fig. 1.

Questo serve per verificare i comportamenti del flusso e fornire ulteriormente diverse funzionalità di distribuzione dell'orientamento della fibra (FOD).

A causa dell'effetto dimensionale, le caratteristiche di restringimento locale e i comportamenti nel modello sono stati analizzati e verificati fianco a fianco dalla simulazione e dagli esperimenti Moldex3D (Fig. 2).

I risultati sono elencati nella tabella 1. La previsione numerica e i risultati degli esperimenti sono molto coerenti.

Fig. 1 Sistema geometrico con tre campioni standard ASTM D638

Fig. 2 Misurazione del restringimento da diverse viste di osservazione

 

 

Tabella 1: Il confronto dei comportamenti puntuali di restringimento di tre diversi campioni sia per la simulazione sia per l'esperimento

 

Gli effetti sulla proprietà meccanica delle parti iniettate sono esposti nella Fig. 3.

Per il PP puro, tre modelli hanno una resistenza alla trazione simile che è di circa 20 N / mm2.

Tuttavia, quando viene applicato materiale FRP, la resistenza alla trazione è stata migliorata in modo significativo. 

Ad esempio, per il Modello I, quando viene introdotta la fibra corta, la resistenza alla trazione è risultata aumentata da 20 N/mm2 a 140 N/mm2.

Una caratteristica simile può essere osservata per il campione del Modello II, in cui la resistenza alla trazione è stata aumentata da 20 N/mm2 a 120 N/mm2.

La resistenza alla trazione del Modello III è stata aumentata da 20 N/mm2 a 40 N/mm2 (PP), il che non è banale, perché l'iniezione a due lati causerebbe linee di saldatura, e quindi zone di fragilità meccanica.

Perché la resistenza della Model I (porta laterale) è superiore a quella del Modello II?

A causa della particolare conformazione del gate, il comportamento asimmetrico del flusso (con vettore di velocità asimmetrica) guiderà la direzione del flusso FOD (distribuzione dell'orientamento della fibra) nel Modello I.

Questo FOD asimmetrico migliorerà ulteriormente la resistenza alla trazione per fornire una migliore proprietà meccanica.

Nel complesso, la previsione della simulazione è risultata altamente coerente con l'osservazione sperimentale.

Fig. 3 Il confronto della resistenza alla trazione tra PP puro e FRP per tre diversi campioni.

Successivamente, abbiamo cercato di individuare la relazione tra le proprietà fisiche delle parti iniettate e le caratteristiche di orientamento della fibra.

In particolare, si voleva sapere quanto fosse accurata la previsione dell'orientamento della fibra della simulazione con Moldex3D.

In precedenza, in assenza di accoppiamento flusso-fibra, la tendenza della variazione di orientamento della fibra sia per la previsione numerica, sia per l'osservazione sperimentale era in buon accordo.

Alcuni casi sono elencati nella fig. 4.

Per maggiori dettagli, fare riferimento all’articolo "Flow induced Orientations of Fibers and Their Influences on Warpage and Mechanical Property in Injection Fiber Reinforced Plastic (FRP) Parts" pubblicato sull'International Journal of Precision Engineering and Manufacturing-Green Technology (2020/06/30, DOI: 10.1007/s40684-020-00226-2)".

Fig. 4 Il comportamento di orientamento della fibra attraverso la previsione numerica (senza accoppiamento flusso-fibra) e l'osservazione sperimentale per il Modello I: (a) nella regione vicino al cancello (NGR), (b) alla fine della regione di riempimento (EFR).

Sebbene i precedenti risultati dell'orientamento delle fibre per previsione numerica fossero buoni nella tendenza rispetto all'osservazione sperimentale, si sono rilevate alcune differenze.

In particolare, se esaminate, le quantità dei tensori di orientamento di A11 e A22 non sono le stesse sia nella previsione numerica che nell'osservazione sperimentale.

Ci si è chiesti, qual è la ragione principale che causa questa deviazione.

Fortunatamente, il Dr. Anthony Favaloro1 et al. Più tardi, il Dr. Huan-Chang Tseng di Moldex3D e il Dr. Anthony Favaloro1 [2] hanno modificato il modello di viscosità IISO come modello IISO rivisto e implementato questo nuovo modello nel software Moldex3D.

Successivamente, abbiamo utilizzato questo nuovo modello IISO rivisto per condurre l'effetto flow-fiber sulla variazione di orientamento della fibra durante lo stampaggio a iniezione. Alcuni risultati sono presentati nella fig. 5. Chiaramente, in presenza di accoppiamento flusso-fibra, i tensori di orientamento di A11 e A22 sono molto vicini sia per la previsione numerica che per l'osservazione sperimentale. In particolare, questi tre singoli campioni DI ASTM D638 hanno diverse storie di flusso e caratteristiche di orientamento delle fibre, ma la previsione numerica può catturare con precisione con precisione quelle diverse caratteristiche di orientamento della fibra (Fig. 5).


Fig. 5 Comportamento di orientamento della fibra mediante previsione numerica utilizzando Moldex3D e osservazione sperimentale senza e con effetto di accoppiamento flusso-fibra: (a) Modello I all'EFR, (b) Modello II all'EFR.

In conclusione, il nuovo modello IISO di Moldex3D può aiutarci a prevedere al meglio e con precisione l'orientamento delle fibre, problematica molto complessa e risolta egregiamente da Moldex3D.

Se sei interessato ai risultati della ricerca, fai riferimento all’articolo pubblicato su Polymers 2020, 12, 2274; doi:10.3390/polym12102274

Il link è il seguente:

Versione HTML: https://www.mdpi.com/2073-4360/12/10/2274/htm
versione PDF: 
https://www.mdpi.com/2073-4360/12/10/2274/pdf

Nota 1: Anthony Favaloro: Ricercatore presso la Purdue University, West Lafayette, Indiana, Stati Uniti

Riferimento

Favaloro, A.J.; Tseng, H.C.; Tubi, R.B. Un nuovo modello costitutivo viscoso anisotropico e simulazione di stampaggio con materiale composito. Compos. Parte A 2018, 115, 112–122.

Tseng, H.C.; Favaloro, A.J. L'uso di equazione costitutiva isotropa per simulare comportamenti reologici anisotropici con materiale FRP. J. Rheol. 2019, 63, 263–274.